If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+70n-28500=0
a = 1; b = 70; c = -28500;
Δ = b2-4ac
Δ = 702-4·1·(-28500)
Δ = 118900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{118900}=\sqrt{100*1189}=\sqrt{100}*\sqrt{1189}=10\sqrt{1189}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(70)-10\sqrt{1189}}{2*1}=\frac{-70-10\sqrt{1189}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(70)+10\sqrt{1189}}{2*1}=\frac{-70+10\sqrt{1189}}{2} $
| 147.58=3.14(d) | | 6/4x=4/7 | | 12.21+0.07x=12071-0.09x | | 28.00+22.75x=50.00+17.25x | | 5+7n=2n+5 | | 41=y/2+11 | | 2(4+4x)=7(x-3) | | 6+9x=6x-8x+13 | | 5^(x-5)=15 | | 12y²-16y+24y-32=0 | | (x+1)(x+1)(x-6)=0 | | 5.3g+9=3.3g+17 | | 11^(y-4)=7 | | 11^y-4=7 | | z+1=16+5z | | 8.5x=14 | | F(r)=3.14^2 | | P(x)=x3-4x2-11x-6 | | 3.16=-0.2x+8.36 | | -0.1x+3.16=0.3x+8.36 | | 2x+16.5=4x+7.5x | | 2x-81=9 | | (5x/20)-(4x/20)=(9/4) | | 12x+40=4x | | 8x²=-26x | | 25/40x+8/40x=66 | | 5/8x+8/40x=66 | | 4x+.8=x+2.8 | | 4/7x-5=-3/7x-7 | | -4z+3z=7z-8+3z | | A(n)=1+(n–1)(–5.7) | | 4p+5=16-(2-p) |